If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=x^2+200
We move all terms to the left:
3x^2-(x^2+200)=0
We get rid of parentheses
3x^2-x^2-200=0
We add all the numbers together, and all the variables
2x^2-200=0
a = 2; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·2·(-200)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*2}=\frac{-40}{4} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*2}=\frac{40}{4} =10 $
| r/2-8=-11 | | 10(x+4)–3=14x+1 | | -3(x+35)=60 | | 4x+18+63+11+11x=180 | | 12x-30=28+14x | | -4(5-x)=-16 | | 2x-8-5(3x-7)=-3(x+1) | | 5−2d=-3d−2 | | –7+6m=7m | | 6x+4-9x=-7x+x-9 | | s(64)=4(64)^2 | | 22n=264 | | 3x-13+64=90° | | 4m−4=52 | | 3y+7=8-27 | | 25/w=20/17 | | 20=s+1 | | (5x-14)=51 | | 41+-8+8x+10x+9=180 | | 3x+3x+3x=-9x+18 | | 7x^2+45x=-32x7x2+45x=−32x | | -14x+12=-2(7x-6) | | 99=2x+3x | | 1(7x+7)=63 | | (2x-14)+64=180 | | 4(x+3)=2x+2x=12 | | -(-5x+7)=13 | | -7h+4=18 | | 180=73-x | | -4(-5-2j)+3j=5(2j+6) | | k+-17=1 | | 0.25-0.5r=0.75r |